网络与信息安全学报 (Dec 2020)

Mining behavior pattern of mobile malware with convolutional neural network

  • Xin ZHANG,
  • Weizhong QIANG,
  • Yueming WU,
  • Deqing ZOU,
  • Hai JIN

Journal volume & issue
Vol. 6
pp. 35 – 44

Abstract

Read online

The features extracted by existing malicious Android application detection methods are redundant and too abstract to reflect the behavior patterns of malicious applications in high-level semantics.In order to solve this problem,an interpretable detection method was proposed.Suspicious system call combinations clustering by social network analysis was converted to a single channel image.Convolution neural network was applied to classify Android application.The model trained was used to find the most suspicious system call combinations by convolution layer gradient weight classification activation mapping algorithm,thus mining and understanding malicious application behavior.The experimental results show that the method can correctly discover the behavior patterns of malicious applications on the basis of efficient detection.

Keywords