Journal of Aceh Physics Society (Apr 2023)

Analysis of the impact climate anomalies (ENSO and IOD) on environments based of computing in the Western Sumatra Region (Equatorial Region of Indonesia)

  • Melly Ariska,
  • Adam Darmawan,
  • Supari Supari,
  • Muhammad Irfan,
  • Iskhaq Iskandar

DOI
https://doi.org/10.24815/jacps.v12i2.31167
Journal volume & issue
Vol. 12, no. 2
pp. 12 – 18

Abstract

Read online

Abstrak. ENSO (El Niño - Southern Oscillation) adalah bentuk anomali iklim di Samudra Pasifik yang ditandai dengan peningkatan suhu permukaan laut (SPL) di bagian Tengah dan Timur khatulistiwa. Fenomena ini memainkan peran penting dalam variasi iklim tahunan dan musiman di Indonesia, terutama di wilayah khatulistiwa Indonesia. Studi ini bertujuan untuk menganalisis dampak anomali iklim komputasi di wilayah khatulistiwa Indonesia. Metode yang digunakan dalam studi ini adalah metode regresi linier dengan membandingkan dua mesin statistik, yaitu bahasa pemrograman Python dan SPSS. Pengaruh ENSO dirasakan di beberapa daerah Indonesia yang ditandai dengan jumlah curah hujan yang lebih rendah selama tahun ENSO dibandingkan dengan sebelum dan sesudah ENSO. Peristiwa El Niño juga mempengaruhi masuknya musim kemarau dan durasinya sepanjang evolusi UNSO. Penurunan jumlah curah hujan berkorelasi negatif dengan peningkatan jumlah kebakaran hutan per tahun. Analisis curah hujan berbasis pembelajaran mesin menggunakan Google Colab dan Python memberikan hasil yang identik dengan analisis berbasis SPSS, sehingga hasil analisis berbasis pembelajaran mesin memiliki nilai yang akurat. Perubahan iklim akan menghasilkan perubahan pola iklim tahunan dan antartahunan seperti penundaan dalam awal musim hujan atau musim kemarau. Selain ENSO, juga terdapat gejala anomali iklim yang dihasilkan oleh interaksi antara laut dan atmosfer di Samudra Hindia di sekitar khatulistiwa, yang disebut IOD (Indian Ocean Dipole). Selain melihat dampak anomali iklim terhadap lingkungan, studi ini juga menguji perbandingan hubungan antara anomali perubahan iklim dan curah hujan menggunakan metode SPSS dan bahasa pemrograman Python dengan membandingkan akurasi output yang dihasilkan secara komputasi. Pengaruh IOD dan ENSO terhadap wilayah tipe hujan ekatorial tidak cukup signifikan. Hubungan antara IOD dan ENSO tidak cukup kuat untuk wilayah khatulistiwa dan tidak terjadi pergeseran pada puncak onset di wilayah ini. Abstract. ENSO (El Niño -Southern Oscillation) is a form of climate deviation in the Pacific Ocean which is characterized by an increase in sea surface temperature (SST) in the Central and Eastern parts of the equator. This phenomenon plays an important role in annual and seasonal climate variations in Indonesia, especially in the equatorial region of Indonesia. This study aimed to analyze the impact of a computational climate anomaly in the equatorial region of Indonesia. The method used in this study was the linear regression method by comparing two statistical engines, namely the Python coding language and SPSS. The influence of ENSO is felt in several areas of Indonesia which are characterized by lower amounts of rainfall during the ENSO year compared to pre- and post-ENSO. El-Niño events also affect the entry of the dry season and its duration throughout the evolution of UNSO. Reducing the amount of annual rainfall is negatively correlated with increasing the number of forest fires per year. Machine learning-based rainfall analysis using google collab and python gives identical results to SPSS-based analysis, so the results of machine learning-based analysis have an accurate value. Climate change will result in changes in annual and interannual climate patterns such as a delay in the start of the rainy season or dry season. In addition, the rainy season period is also expected to be shorter. Apart from ENSO, there are also symptoms of climate deviations produced by the interaction of the sea and the atmosphere in the Indian Ocean around the equator, which is called the IOD (Indian Ocean Dipole). In addition to looking at the impact of climate anomaly on the environment, this study also examines the comparison of the relationship between climate change anomaly and rainfall using the SPSS method and the Python coding language by comparing the accuracy of the computationally generated output. The influence of IOD and ENSO on the rain-type region with the Equatorial rain-type region is not significant enough. The relationship between IOD and ENSO is not strong enough for the equatorial region and there is no shift in the peak onset in this region.

Keywords