Atmospheric Measurement Techniques (Mar 2024)

Performance characterization of a laminar gas inlet

  • D. Yang,
  • D. Yang,
  • D. Yang,
  • M. Reza,
  • M. Reza,
  • R. Mauldin,
  • R. Volkamer,
  • R. Volkamer,
  • R. Volkamer,
  • S. Dhaniyala

DOI
https://doi.org/10.5194/amt-17-1463-2024
Journal volume & issue
Vol. 17
pp. 1463 – 1474

Abstract

Read online

Aircraft-based measurements enable large-scale characterization of gas-phase atmospheric composition, but these measurements are complicated by the challenges of sampling from high-speed flow. Under such sampling conditions, the sample flow will likely experience turbulence, accelerating and mixing of potential contamination of the gas-phase from the condensed-phase components on walls, and reduced vapor transmission due to losses to the inner walls of the sampling line. While a significant amount of research has gone into understanding aerosol sampling efficiency for aircraft inlets, a similar research investment has not been made for gas sampling. Here, we analyze the performance of a forward-facing laminar flow gas inlet to establish its performance as a function of operating conditions, including ambient pressure, freestream velocities, and sampling conditions. Using computational fluid dynamics (CFD) modeling we simulate flow inside and outside the inlet to determine the extent of freestream turbulent interaction with the sample flow and its implication for gas sample transport. The CFD results of flow features in the inlet are compared against measurements of air speed and turbulent intensity from full-sized high-speed wind tunnel experiments. These comparisons suggest that the Reynolds-averaged Navier–Stokes (RANS) CFD simulations using the shear stress transport (SST) modeling approach provide the most reasonable prediction of the turbulence characteristics of the inlet.