Mathematics (Dec 2022)
Some Examples of BL-Algebras Using Commutative Rings
Abstract
BL-algebras are algebraic structures corresponding to Hajek’s basic fuzzy logic. The aim of this paper is to analyze the structure of BL-algebras using commutative rings. Due to computational considerations, we are interested in the finite case. We present new ways to generate finite BL-algebras using commutative rings and provide summarizing statistics. Furthermore, we investigated BL-rings, i.e., commutative rings whose the lattice of ideals can be equipped with a structure of BL-algebra. A new characterization for these rings and their connections to other classes of rings is established. Furthermore, we give examples of finite BL-rings for which the lattice of ideals is not an MV-algebra and, using these rings, we construct BL-algebras with 2r+1 elements, r≥2, and BL-chains with k elements, k≥4. In addition, we provide an explicit construction of isomorphism classes of BL-algebras of small n size (2≤n≤5).
Keywords