International Journal of Molecular Sciences (Jan 2023)

RPLP1 Is Up-Regulated in Human Adenomyosis and Endometrial Adenocarcinoma Epithelial Cells and Is Essential for Cell Survival and Migration In Vitro

  • Riley Peterson,
  • Paige Minchella,
  • Wei Cui,
  • Amanda Graham,
  • Warren B. Nothnick

DOI
https://doi.org/10.3390/ijms24032690
Journal volume & issue
Vol. 24, no. 3
p. 2690

Abstract

Read online

Adenomyosis is defined as the development of endometrial epithelial glands and stroma within the myometrial layer of the uterus. These “ectopic” lesions share many cellular characteristics with endometriotic epithelial cells as well as endometrial adenocarcinoma cells, including enhanced proliferation, migration, invasion and progesterone resistance. We recently reported that the 60S acidic ribosomal protein P1, RPLP1, is up-regulated in endometriotic epithelial cells and lesion tissue where it plays a role in cell survival. To evaluate if a similar pattern of expression and function for RPLP1 exists in adenomyosis and endometrial cancer, we examined RPLP1 expression in adenomyosis and endometrial cancer tissue specimens and assessed its function in vitro using well-characterized cell lines. A total of 12 control endometrial biopsies and 20 eutopic endometrial and matched adenomyosis biopsies as well as 103 endometrial adenocarcinoma biopsies were evaluated for RPLP1 localization by immunohistochemistry. Endometrial adenocarcinoma cell lines, Ishikawa, HEC1A, HEC1B and AN3 were evaluated for RPLP1 protein and transcript expression, while in vitro function was evaluated by knocking down RPLP1 expression and assessing cell survival and migration. RPLP1 protein was up-regulated in eutopic epithelia as well as in adenomyosis lesions compared to eutopic endometria from control subjects. RPLP1 was also significantly up-regulated in endometrial adenocarcinoma tissue. Knockdown of RPLP1 in endometrial adenocarcinoma cell lines was associated with reduced cell survival and migration. RPLP1 expression is up-regulated in eutopic and ectopic adenomyotic epithelia as well as in the epithelia of endometrial cancer specimens. In vitro studies support an essential role for RPLP1 in mediating cell survival and migration, processes which are all involved in pathophysiology associated with both diseases.

Keywords