Fuels (Mar 2025)

Flow Field Analysis of a Hydrogen-Fueled Flame Holder Using Particle Image Velocimetry (PIV)

  • Florin Gabriel Florean,
  • Andreea Mangra,
  • Marius Enache,
  • Razvan Carlanescu,
  • Cristian Carlanescu

DOI
https://doi.org/10.3390/fuels6010020
Journal volume & issue
Vol. 6, no. 1
p. 20

Abstract

Read online

The stability of hydrogen-fueled flames in afterburner systems is crucial for advancing clean energy technologies but is challenged by intense turbulence and flow variability. This study uniquely integrates advanced particle image velocimetry (PIV) techniques to investigate the flow dynamics around a V-gutter flame holder fueled with 100% hydrogen. Detailed velocity measurements were conducted to analyze the standard deviation of Vy, average Vy, average V, and uncertainty of Vy, as well as the mean swirling strength and mean vorticity profiles across multiple horizontal and vertical lines. The results reveal significant flow variability and turbulence intensity near the flame holder, with standard deviation peaks of up to 12 m/s, indicating zones of high turbulence and potential flame instability. The mean swirling strength, peaking at 850,000 [1/s2], and vorticity values up to 5000 [1/s] highlight intense rotational motion, enhancing fuel–air mixing and flame stabilization. The average Vy remained stable near the centerline, ensuring balanced flow conditions, while lateral deviations of up to −10 m/s reflect vortical structures induced by the flame holder geometry. Low uncertainty values, typically below 1 m/s, validate the precision of the PIV measurements, ensuring a reliable representation of the flow field. By providing a detailed analysis of turbulence structures and their impact on hydrogen combustion, this study offers novel insights into the interplay between flow dynamics and flame stability. These findings not only advance the understanding of hydrogen-fueled afterburner systems but also demonstrate the critical role of rotational flow structures in achieving stable and efficient combustion. By addressing key challenges in hydrogen combustion, this study provides a foundation for designing more robust and environmentally sustainable combustion systems, contributing to the transition toward clean energy technologies.

Keywords