Scientific Reports (May 2022)

Numerical and experimental analysis of Lagrangian dispersion in two-dimensional chaotic flows

  • Giovanni La Forgia,
  • Davide Cavaliere,
  • Stefania Espa,
  • Federico Falcini,
  • Guglielmo Lacorata

DOI
https://doi.org/10.1038/s41598-022-11350-1
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 12

Abstract

Read online

Abstract We present a review and a new assessment of the Lagrangian dispersion properties of a 2D model of chaotic advection and diffusion in a regular lattice of non stationary kinematic eddies. This model represents an ideal case for which it is possible to analyze the same system from three different perspectives: theory, modelling and experiments. At this regard, we examine absolute and relative Lagrangian dispersion for a kinematic flow, a hydrodynamic model (Delft3D), and a laboratory experiment, in terms of established dynamical system techniques, such as the measure of (Lagrangian) finite-scale Lyapunov exponents (FSLE). The new main results concern: (i) an experimental verification of the scale-dependent dispersion properties of the chaotic advection and diffusion model here considered; (ii) a qualitative and quantitative assessment of the hydro-dynamical Lagrangian simulations. The latter, even though obtained for an idealized open flow configuration, contributes to the overall validation of the computational features of the Delft3D model.