Scientific Reports (Mar 2024)

Stimulus type and duration affect magnitude and evolution of flicker-induced hyperemia measured by laser speckle flowgraphy at the optic disc and peripapillary vessels

  • Moe H. Aung,
  • Tomas S. Aleman,
  • Arielle S. Garcia,
  • Brendan McGeehan,
  • Gui-Shuang Ying,
  • Robert A. Avery

DOI
https://doi.org/10.1038/s41598-024-57263-z
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Neurovascular coupling is a vital mechanism employed by the cerebrovascular system, including the eye, to regulate blood flow in periods of neuronal activation. This study aims to investigate if laser speckle flowgraphy (LSFG) can detect coupling response elicited by flickering light stimuli and how variations in stimulus type and duration can affect the magnitude and evolution of blood flow in the optic nerve head (ONH) and peripapillary vessels. Healthy adults were exposed to two types of 10-Hz flicker stimuli: a photopic negative response-like stimulus (PhNR-S) or a visual evoked potential-like stimulus (VEP-S)—each presented in separate 10- and 60-s epochs. Both PhNR-S and VEP-S significantly increased ONH blood flow (p < 0.001) immediately after flicker cessation, with a trend of 60-s stimuli (PhNR-S = 11.6%; VEP-S = 10.4%) producing a larger response than 10-s stimuli (PhNR-S = 7.5%; VEP-S = 6.2%). Moreover, exposure to 60-s stimuli elicited a significantly prolonged ONH hyperemic response, especially with PhNR-S. Lastly, stimulation with either 60-s stimuli elicited a robust increase in blood flow within the peripapillary arterioles (p < 0.01) and venules (p < 0.01) as well. Flicker stimulation with common visual electrophysiology stimuli (PhNR-S and VEP-S) induced a demonstrable increase in ONH and peripapillary vessel blood flow, which varied with flicker duration. Our results validate that LSFG is a robust method to quantify flicker-induced hyperemic responses and to study neurovascular coupling in humans.

Keywords