Cancers (Mar 2024)

Sex-Specific Expression of Histone Lysine Demethylases (KDMs) in Thyroid Cancer

  • Leila Shobab,
  • Hui Zheng,
  • Kirk Jensen,
  • Maria Cecilia Mendonca-Torres,
  • Matthew McCoy,
  • Victoria Hoperia,
  • Jennifer Rosen,
  • Leonard Wartofsky,
  • Kenneth Burman,
  • Vasyl Vasko

DOI
https://doi.org/10.3390/cancers16071260
Journal volume & issue
Vol. 16, no. 7
p. 1260

Abstract

Read online

Background: The incidence of thyroid cancer in women is 3–4-fold higher than in men. To characterize sex-specific molecular alterations in thyroid cancer, we examined the expression of sex-biased genes in normal thyroids and thyroid tumors. Methods: Ingenuity pathways analysis was used to define sex-biased gene networks using data from the Cancer Genome Atlas (TCGA). Confirmatory studies were performed through the analysis of histone lysine demethylases (KDMs) expression by real-time PCR and immunostaining. Results: In normal thyroids, 44 sex-biased genes were comparatively upregulated in male and 28 in female patients. The expressions of 37/72 (51%) sex-biased genes were affected in cancer tissues compared with normal thyroids. Gene network analyses revealed sex-specific patterns in the expressions of KDM5C, KDM5D, and KDM6A. In confirmatory studies, KDM5D mRNA and protein were detected only in males, whereas KDM5C and KDM6A were detected in samples from male and female patients. Nuclear staining with anti-KDMs was found in normal thyroids, but a loss of nuclear expression with a concomitant gain of cytoplasmic staining was observed in cancer tissues. Conclusions: Normal thyroids have a sex-specific molecular signature, and the development of thyroid cancer is associated with a differential expression of sex-biased genes. The sex-specific expression of KDMs, coupled with cancer-related alterations in their intracellular localization, may contribute to mechanisms underlying sex differences in thyroid tumorigenesis.

Keywords