Open Mathematics (Dec 2023)
Average value of the divisor class numbers of real cubic function fields
Abstract
We compute an asymptotic formula for the divisor class numbers of real cubic function fields Km=k(m3){K}_{m}=k\left(\sqrt[3]{m}), where Fq{{\mathbb{F}}}_{q} is a finite field with qq elements, q≡1(mod3)q\equiv 1\hspace{0.3em}\left(\mathrm{mod}\hspace{0.3em}3), k≔Fq(T)k:= {{\mathbb{F}}}_{q}\left(T) is the rational function field, and m∈Fq[T]m\in {{\mathbb{F}}}_{q}\left[T] is a cube-free polynomial; in this case, the degree of mm is divisible by 3. For computation of our asymptotic formula, we find the average value of ∣L(s,χ)∣2{| L\left(s,\chi )| }^{2} evaluated at s=1s=1 when χ\chi goes through the primitive cubic even Dirichlet characters of Fq[T]{{\mathbb{F}}}_{q}\left[T], where L(s,χ)L\left(s,\chi ) is the associated Dirichlet LL-function.
Keywords