Physical Review Research (Nov 2021)
Fatigue crack growth in an aluminum alloy: Avalanches and coarse graining to growth laws
Abstract
In fatigue fracture the crack growth is slow and in many materials exhibits apparent self-similarity as expressed by the dependence of the growth velocity on a stress intensity factor that grows with the crack size. We study the intermittency of fatigue crack dynamics in aluminium alloys by optical tracking. A power-law distribution of crack tip jumps is found with an exponent close to two and a cutoff which increases with time or crack propagation. The cutoff is related to the crack velocity. We show how such a distribution evolves or coarse grains with the scale of observation or time window. The correlations of the crack propagation imply short-range memory effects in the underlying dynamics. Our results show universal features of fatigue cracks and how these lead to the crack growth and failure in material samples.