EURO Journal on Computational Optimization (Mar 2017)

A bounded degree SOS hierarchy for polynomial optimization

  • JeanB. Lasserre,
  • Kim-Chuan Toh,
  • Shouguang Yang

Journal volume & issue
Vol. 5, no. 1
pp. 87 – 117

Abstract

Read online

We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P):f∗=min{f(x):x∈K} on a compact basic semi-algebraic set K⊂Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractive features: (a) in contrast to the standard SOS-hierarchy, for each relaxation in the hierarchy, the size of the matrix associated with the semidefinite constraint is the same and fixed in advance by the user; (b) in contrast to the LP-hierarchy, finite convergence occurs at the first step of the hierarchy for an important class of convex problems; and (c) some important techniques related to the use of point evaluations for declaring a polynomial to be zero and to the use of rank-one matrices make an efficient implementation possible. Preliminary results on a sample of non convex problems are encouraging.

Keywords