Neurobiology of Disease (Oct 2023)

Deep learning combining FDG-PET and neurocognitive data accurately predicts MCI conversion to Alzheimer's dementia 3-year post MCI diagnosis

  • Eric Cao,
  • Da Ma,
  • Siddharth Nayak,
  • Tim Q. Duong

Journal volume & issue
Vol. 187
p. 106310

Abstract

Read online

Introduction: This study reports a novel deep learning approach to predict mild cognitive impairment (MCI) conversion to Alzheimer's dementia (AD) within three years using whole-brain fluorodeoxyglucose (FDG) positron emission tomography (PET) and cognitive scores (CS). Methods: This analysis consisted of 150 normal controls (CN), 257 MCI, and 205 AD subjects from ADNI. FDG-PET and CS were obtained at MCI diagnosis to predict AD conversion within three years of MCI diagnosis using convolutional neural networks. Results: Neurocognitive scores predicted better than FDG-PET per se, but the best model was a combination of FDG-PET, age, and neurocognitive data, yielding an AUC of 0.785 ± 0.096 and a balanced accuracy of 0.733 ± 0.098. Saliency maps highlighted putamen, thalamus, inferior frontal gyrus, parietal operculum, precuneus cortices, calcarine cortices, temporal gyrus, and planum temporale to be important for prediction. Discussion: Deep learning accurately predicts MCI conversion to AD and provides neural correlates of brain regions associated with AD conversion.

Keywords