Revista DAE (Jan 2020)
Modelo de predição de desempenho de estações de tratamento de água de pequeno porte usando redes neurais artificiais
Abstract
As estações de tratamento de água (ETAs) têm um papel fundamental e estratégico no controle de doenças transmitidas pela água por meio da potabilização da água, para atender às necessidades da população que é abastecida por ela. Nesse contexto, a avaliação do desempenho dessas estações é primordial, particularmente para as entidades responsáveis pelo estágio de controle da qualidade da água, uma vez que a ETA deve apresentar e operar com condições mínimas necessárias para alcançar seu objetivo. Para o desenvolvimento dos modelos (Modelo 1 - com base na turbidez da água tratada e Modelo 2 - com base na cor aparente da água tratada) foram utilizados dados referentes à qualidade da água bruta e tratada, fatores operacionais e parâmetros hidráulicos de 3 ETAs, com taxas de fluxo de 50 L.s-1 ou menos. Os modelos foram desenvolvidos usando a caixa de ferramentas do Matlab®, a partir da rede neural do tipo de camadas recorrentes, com função de ativação tansig e purelin. Como resultados, os modelos apresentaram coeficientes de determinação de 0,928 e 0,823 para turbidez e cor aparente da água tratada, respectivamente. Os resultados corroboram a aplicação da Inteligência Artificial em estações de tratamento de água, com o objetivo de otimizar processos e garantir uma maior operabilidade da ETAs, gerando um produto cada vez mais confiável.
Keywords