Copper-catalyzed oxidative dehydrogenative dearomatization of indole derivatives: A new strategy to construct spirocyclic indolenines
Junli Chao,
Yuanyuan Yue,
Ke Wang,
Xiaohui Guo,
Chunying Sun,
Yue Xu,
Jianming Liu
Affiliations
Junli Chao
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
Yuanyuan Yue
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China; Corresponding author
Ke Wang
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
Xiaohui Guo
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
Chunying Sun
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
Yue Xu
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
Jianming Liu
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China; Corresponding author
Summary: A concise copper-catalyzed oxidative dehydrogenative dearomatization of indole derivatives for the direct synthesis of spirocyclic indolenines containing fluorene and indeno[2,1-b]indole groups has been established. The utility of this method has also been successfully accomplished by dual oxidative dehydrogenative dearomatization to deliver the desired spirocyclic indolenines containing fluorene groups. According to mechanistic analyses, the C-H cleavage of the phenyl ring was not implicated in the rate-limiting phase. This transformation underwent a single-electron-transfer oxidation by copper(II) catalyst to afford a radical-cation intermediate, yielding the final product by nucleophilic attack and dual deprotonation.