Genome-Wide Identification and Expression Analysis of Sucrose Nonfermenting 1-Related Protein Kinase (<i>SnRK</i>) Genes in <i>Salvia miltiorrhiza</i> in Response to Hormone
Tingyao Liu,
Yinkai Yang,
Ruiyan Zhu,
Qichao Wang,
Yao Wang,
Min Shi,
Guoyin Kai
Affiliations
Tingyao Liu
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
Yinkai Yang
Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
Ruiyan Zhu
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
Qichao Wang
Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
Yao Wang
Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
Min Shi
Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
Guoyin Kai
College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
The SnRK gene family is the chief component of plant stress resistance and metabolism through activating the phosphorylation of downstream proteins. S. miltiorrhiza is widely used for the treatment of cardiovascular diseases in Asian countries. However, information about the SnRK gene family of S. miltiorrhiza is not clear. The aim of this study is to comprehensively analyze the SnRK gene family of S. miltiorrhiza and its response to phytohormone. Here, 33 SmSnRK genes were identified and divided into three subfamilies (SmSnRK1, SmSnRK2 and SmSnRK3) according to phylogenetic analysis and domain. SmSnRK genes within same subgroup shared similar protein motif composition and were unevenly distributed on eight chromosomes of S. miltiorrhiza. Cis-acting element analysis showed that the promoter of SmSnRK genes was enriched with ABRE motifs. Expression pattern analysis revealed that SmSnRK genes were preferentially expressed in leaves and roots. Most SmSnRK genes were induced by ABA and MeJA treatment. Correlation analysis showed that SmSnRK3.15 and SmSnRK3.18 might positively regulate tanshinone biosynthesis; SmSnRK3.10 and SmSnRK3.12 might positively regulate salvianolic acid biosynthesis. RNAi-based silencing of SmSnRK2.6 down-regulated the biosynthesis of tanshinones and biosynthetic genes expression. An in vitro phosphorylation assay verified that SmSnRK2.2 interacted with and phosphorylated SmAREB1. These findings will provide a valuable basis for the functional characterization of SmSnRK genes and quality improvement of S. miltiorrhiza.