This work uses design optimization of a power electronics converter to achieve the best levelized cost of energy in a PV application. The methodology uses detailed models of power electronics’ active and passive components to determine the cost and performances of the solid-state energy conversion and connect them to the system-level vision. The deterministic algorithm used for converter sizing allows taking into account a large number of variables and constraints. Methodology, models, and some illustrations of the results are provided in this paper. A sensitivity analysis was also conducted on the cost model.