BioMedical Engineering OnLine (Jul 2007)

Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements

  • Nagano Akinori,
  • Yoshioka Shinsuke,
  • Himeno Ryutaro,
  • Fukashiro Senshi

DOI
https://doi.org/10.1186/1475-925X-6-26
Journal volume & issue
Vol. 6, no. 1
p. 26

Abstract

Read online

Abstract Background A sit-to-stand (STS) movement requires muscle strength higher than that of other daily activities. There are many elderly people, who experience difficulty when standing up from a chair. The muscle strength required (or the load on the joints) during a STS task is determined by the kinematics (movement pattern). The purpose of this study was to evaluate the kinematics and resultant joint moments of people standing up from a chair in order to determine the minimum peak joint moments required for a STS task. Methods This study consisted of three steps. In the first step, kinematic data of lower extremity joint angles (hip, knee and ankle) during STS movements were experimentally collected from human subjects. Eighty-five sets of STS kinematic data were obtained. In the second step, the experimentally collected kinematic data and a link segment model of the human body were used to generate more than 5,000,000 computed STS movements. In the third step, using inverse dynamics method, joint moments of the lower extremity were calculated for all movements obtained through the preceding steps. From the outputs of the third step, the optimal kinematics (movement pattern) in terms of minimized peak joint moment for the hip, knee and ankle was determined. Results The peak hip joint moment ranged from 0.24 to 1.92 N.m/kg. The peak knee joint moment ranged from 0.51 to 1.97 N.m/kg, and the peak ankle joint moment ranged from -0.11 to 1.32 N.m/kg. The optimal movement patterns differed depending on which minimized joint moment index was selected (hip, knee or ankle). However, the sum of the peak hip joint moment and peak knee joint moment was always approximately 1.53 N.m/kg regardless of which minimized joint moment index was selected. Conclusion The most important finding of this study was that the relation between the peak joint moments at the hip and knee joints was complementary and the sum of those moments needed to be greater than 1.53 N.m/kg in order to perform a successful STS. A combined hip-knee value of 1.5 N.m/kg or lower may indicate the need for physical rehabilitation and/or exercise to increase muscular force.