Colloids and Interfaces (Mar 2024)
Theoretical and Experimental Determinations of the Hydrophilic–Lipophilic Balance (HLB) of Representative Oils and Lecithins
Abstract
The hydrophilic–lipophilic balance (HLB) is a valuable parameter used to determine the relative hydrophobicity of a compound based on its chemical structure. This semi-empirical parameter has been instrumental in formulating oil-in-water and water-in-oil emulsions using well-characterized ingredients with known HLB values. However, recent trends toward the use of minimally processed “virgin” oils of therapeutic or nutritional value may render the reported “required HLB” values inaccurate. Minimally processed oils can contain numerous compounds at varying or unknown concentrations, rendering the HLB value incalculable. Factors such as regional source, growing season, and processing method contribute to the variability in oil composition. Furthermore, the solubilization of lipophilic bioactives in oils can significantly alter the HLB of the oil phase in a concentration-dependent manner. This complicates the formulation of emulsions, as the HLB values of both the oil phase and emulsifiers must be closely matched to achieve stable formulations. This study presents a simple and efficient experimental method to determine an HLB value of a complex ingredient without resorting to lengthy Design-of-Experiment (DoE) matrices and trial-and-error approaches. The optimal HLB of a formulation can be determined from a series of experiments in which two well-characterized surfactants of known HLB values are mixed at varying proportions with an unknown oil phase, where the HLB of the oil is considered to match the HLB value of the surfactants combined at the proportion at which nanoemulsions with the smallest, most stable oil droplets are formed. Similarly, when the HLB values of the oil phase and other contributing components are precisely known, the unknown HLB of a complex natural surfactant can be calculated. These calculations assist in formulating emulsions efficiently and effectively by ensuring optimal compatibility among all the components.
Keywords