Parasite (Jan 2021)

Cytochrome P450 monooxygenase of Acanthamoeba castellanii participates in resistance to polyhexamethylene biguanide treatment

  • Huang Jian-Ming,
  • Ko Pin-Ju,
  • Huang Chao-Li,
  • Wen Po-Wei,
  • Chen Chun-Hsien,
  • Shih Min-Hsiu,
  • Lin Wei-Chen,
  • Huang Fu-Chin

DOI
https://doi.org/10.1051/parasite/2021074
Journal volume & issue
Vol. 28
p. 77

Abstract

Read online

Acanthamoeba spp. are free-living parasites that can cause severe infections such as granulomatous amoebic encephalitis (GAE) and amoebic keratitis (AK). Polyhexamethylene biguanide (PHMB) is a topical application for AK treatment. However, PHMB is not entirely effective against all Acanthamoeba strains or isolates. The mechanisms by which Acanthamoeba protects itself against extreme drug conditions without encystation are still unknown. According to a previous study, cytochrome P450 monooxygenase (CYP450MO) plays an important role in the oxidative biotransformation of numerous drugs related to metabolism. In this study, a CYP450MO fragment was inserted into the pGAPDH-EGFP vector and transfected into Acanthamoeba castellanii. We found that CYP450MO-overexpressing Acanthamoeba had higher survival rates than those of the control cells after PHMB treatment. Moreover, we also found that encystation-related genes such as cellulose synthase I (CSI), encystation-mediating serine proteinase (EMSP), and autophagy-related protein 8 (ATG8) expression levels were not significantly different between Acanthamoeba transfected by pGAPDH-EGFP or pGAPDH-EGFP-CYP450MO. We suggest that Acanthamoeba transfected by pGAPDH-EGFP-CYP450MO may not induce encystation-related genes to resist PHMB treatment. In conclusion, these findings indicate that CYP450MO may be an additional target when PHMB is used for treatment of amoebic keratitis.

Keywords