Manufacturing Review (Jan 2016)

Nanomechanical properties and thermal decomposition of Cu-Al2O3 composites for FGM applications

  • Koumoulos Elias P.,
  • Kartsonakis Ioannis A.,
  • Bakolas Asterios,
  • Charitidis Costas A.

DOI
https://doi.org/10.1051/mfreview/2016022
Journal volume & issue
Vol. 3
p. 20

Abstract

Read online

It is widely reported that copper-alumina (Cu-Al2O3) nanocomposite materials exhibit high potential for use in structural applications in which enhanced mechanical characteristics are required. The investigation of Cu-Al2O3 nanocomposites which are to form a functionally graded material (FGM) structure in terms of nanomechanical/structural integrity and thermal stability is still scarce. In this work, fully characterized nanosized Al2O3 powder has been incorporated in Cu matrix in various compositions (2, 5 and 10 wt.% of Al2O3 content). The produced composites were evaluated in terms of their morphology, structural analysis, thermal behavior, nanomechanical properties and their extent of viscoplasticity. The results reveal that all nanocomposites degrade at elevated temperatures; increased surface mass gain with decreasing Al2O3 content was observed, while no such difference of % mass gain in 5 and 10 wt.% of Al and Al2O3 content in Cu was observed. The increase of Al2O3 wt.% content results in thermal stability enhancement of the nanocomposites. The thermal decomposition process of the material is reduced in the presence of 10 wt.% of Al2O3 content. This result for the matrix decomposition can be explained by a decrease in the diffusion of oxygen and volatile degradation products throughout the composite material due to the incorporation of Al and Al2O3. The Al2O3 powder enhances the overall thermal stability of the system. All samples exhibited significant pile-up of the materials after nanoindentation testing. Increasing the wt.% of Al2O3 content was found to increase the creep deformation of the samples as well as the hardness and elastic modulus values.

Keywords