Symmetry (Aug 2023)

Conditional Uncertainty Distribution of Two Uncertain Variables and Conditional Inverse Uncertainty Distribution

  • Lihui Wang,
  • Yufu Ning,
  • Xiumei Chen,
  • Shukun Chen,
  • Hong Huang

DOI
https://doi.org/10.3390/sym15081592
Journal volume & issue
Vol. 15, no. 8
p. 1592

Abstract

Read online

It is noted that some uncertain variables are independent while others are not. In general, there is a symmetrical relationship between independence and dependence among uncertain variables. The utilization of conditional uncertain measures as well as conditional uncertainty distributions proves highly efficacious in resolving uncertainties pertaining to an event subsequent to the acquisition of knowledge about other events. In this paper, the theorem about the conditional uncertainty distribution of two uncertain variables is proposed. It is demonstrated that the theorem holds regardless of whether the two variables are independent or not. In addition, it is also found that uncertainty distribution possesses an inherent inverse function when it is a regular uncertainty distribution within the framework of Uncertainty Theory; therefore, this paper delves into investigating the conditional inverse uncertainty distribution, including specific cases of the conditional inverse uncertainty distributions. Meanwhile, illustrative examples are applied to clarify the findings.

Keywords