Biomolecules (Sep 2022)
Characterization of Novel Pectinolytic Enzymes Derived from the Efficient Lignocellulose Degradation Microbiota
Abstract
Diverse pectinolytic enzymes are widely applied in the food, papermaking, and other industries, and they account for more than 25% of the global industrial enzyme demands. Efficient lignocellulose degradation microbiota are reservoirs of pectinolytic enzymes and other lignocellulose-degrading genes. Metagenomics has been widely used to discover new pectinolytic enzymes. Here, we used a metagenomic strategy to characterize pectinolytic genes from one efficient lignocellulose-degrading microbiota derived from pulp and paper wastewater treatment microbiota. A total of 23 predicted full-length GH28 and PL1 family pectinolytic genes were selectively cloned and expressed in Escherichia coli, and 5 of the expressed proteins had pectinolytic activities. Among them, the characterization of one pectinolytic enzyme, PW-pGH28-3, which has a 58.4% identity with an exo-polygalacturonase gene of Aquipluma nitroreducens, was further investigated. The optimal pH and optimal temperature of PW-pGH28-3 were 8.0 and 40 °C, respectively, and its pectinolytic activity at the optimal condition was 13.5 ± 1.1 U/mg protein. Bioinformatics analyses and structural modeling suggest that PW-pGH28-3 is a novel secretory exo-polygalacturonase, which is confirmed by its hydrolysates of polygalacturonic acid. The detection of PW-pGH28-3 and other pectinolytic genes showed that efficient lignocellulose degradation microbiota could provide potential efficient pectinolytic enzymes for industrial application. In the future, improving metagenomic screening efficiency would discover efficient lignocellulose-degrading enzymes and lead to the sustainable and green utilization of lignocellulose.
Keywords