Molecules (Oct 2020)

Pyrrolo[3,2-<i>b</i>]pyrrole-1,4-dione (IsoDPP) End Capped with Napthalimide or Phthalimide: Novel Small Molecular Acceptors for Organic Solar Cells

  • Thu Trang Do,
  • Meera Stephen,
  • Khai Leok Chan,
  • Sergei Manzhos,
  • Paul L. Burn,
  • Prashant Sonar

DOI
https://doi.org/10.3390/molecules25204700
Journal volume & issue
Vol. 25, no. 20
p. 4700

Abstract

Read online

We introduce two novel solution-processable electron acceptors based on an isomeric core of the much explored diketopyrrolopyrrole (DPP) moiety, namely pyrrolo[3,2-b]pyrrole-1,4-dione (IsoDPP). The newly designed and synthesized compounds, 6,6′-[(1,4-bis{4-decylphenyl}-2,5-dioxo-1,2,4,5-tetrahydropyrrolo[3,2-b]pyrrole-3,6-diyl)bis(thiophene-5,2-diyl)]bis[2-(2-butyloctyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione] (NAI-IsoDPP-NAI) and 5,5′-[(1,4-bis{4-decylphenyl}-2,5-dioxo-1,2,4,5-tetrahydropyrrolo[3,2-b]pyrrole-3,6-diyl)bis(thiophene-5,2-diyl)]bis[2-(2-butyloctyl)isoindoline-1,3-dione] (PI-IsoDPP-PI) have been synthesized via Suzuki couplings using IsoDPP as a central building block and napthalimide or phthalimide as end-capping groups. The materials both exhibit good solubility in a wide range of organic solvents including chloroform (CF), dichloromethane (DCM), and tetrahydrofuran (THF), and have a high thermal stability. The new materials absorb in the wavelength range of 300–600 nm and both compounds have similar electron affinities, with the electron affinities that are compatible with their use as acceptors in donor-acceptor bulk heterojunction (BHJ) organic solar cells. BHJ devices comprising the NAI-IsoDPP-NAI acceptor with poly(3-n-hexylthiophene) (P3HT) as the donor were found to have a better performance than the PI-IsoDPP-PI containing cells, with the best device having a VOC of 0.92 V, a JSC of 1.7 mAcm−2, a FF of 63%, and a PCE of 0.97%.

Keywords