Geosciences (Dec 2018)

Modeling Dry-Snow Densification without Abrupt Transition

  • Elizabeth Morris

DOI
https://doi.org/10.3390/geosciences8120464
Journal volume & issue
Vol. 8, no. 12
p. 464

Abstract

Read online

An empirical model for the densification of dry snow has been calibrated using strain-rate data from Pine Island Glacier basin, Antarctica. The model provides for a smooth transition between Stage 1 and Stage 2 densification, and leads to an analytical expression for density as a function of depth. It introduces two new parameters with a simple physical basis: transition density ρ T and a scaling factor, M, which controls the extent of the transition zone. The standard (Herron and Langway) parameterization is used for strain rates away from the transition zone. Calibration, though tentative, produces best parameter values of ρ T = 580 kg m − 3 and M = 7 for the region. Using these values, the transition model produces better simulations of snow profiles from Pine Island Glacier basin than the well-established Herron and Langway and Ligtenberg models, both of which postulate abrupt transition. Simulation of density profiles from other sites using M = 7 produces the best values of ρ T = 550 kg m − 3 for a high accumulation site and 530 kg m − 3 for a low accumulation site, suggesting that transition density may vary with climatic conditions. The variation of bubble close-off depth and depth-integrated porosity with mean annual accumulation predicted by the transition model is similar to that predicted by the Simonsen model tuned for Greenland.

Keywords