mSystems (Feb 2024)

Genome-scale metabolic model of the versatile bacterium Paracoccus denitrificans Pd1222

  • Sergio Bordel,
  • Diego Martín-González,
  • Tim Börner,
  • Raúl Muñoz,
  • Fernando Santos-Beneit

DOI
https://doi.org/10.1128/msystems.01077-23
Journal volume & issue
Vol. 9, no. 2

Abstract

Read online

ABSTRACTA genome scale metabolic model of the bacterium Paracoccus denitrificans has been constructed. The model containing 972 metabolic genes, 1,371 reactions, and 1,388 unique metabolites has been reconstructed. The model was used to carry out quantitative predictions of biomass yields on 10 different carbon sources under aerobic conditions. Yields on C1 compounds suggest that formate is oxidized by a formate dehydrogenase O, which uses ubiquinone as redox co-factor. The model also predicted the threshold methanol/mannitol uptake ratio, above which ribulose biphosphate carboxylase has to be expressed in order to optimize biomass yields. Biomass yields on acetate, formate, and succinate, when NO3− is used as electron acceptor, were also predicted correctly. The model reconstruction revealed the capability of P. denitrificans to grow on several non-conventional substrates such as adipic acid, 1,4-butanediol, 1,3-butanediol, and ethylene glycol. The capacity to grow on these substrates was tested experimentally, and the experimental biomass yields on these substrates were accurately predicted by the model.IMPORTANCEParacoccus denitrificans has been broadly used as a model denitrifying organism. It grows on a large portfolio of carbon sources, under aerobic and anoxic conditions. These characteristics, together with its amenability to genetic manipulations, make P. denitrificans a promising cell factory for industrial biotechnology. This paper presents and validates the first functional genome-scale metabolic model for P. denitrificans, which is a key tool to enable P. denitrificans as a platform for metabolic engineering and industrial biotechnology. Optimization of the biomass yield led to accurate predictions in a broad scope of substrates.

Keywords