International Journal of Molecular Sciences (Nov 2021)

Cubic Octa-Carbon: Quantum-Chemical Design of Molecular Structure and Potential Way of Its Synthesis from Cubane

  • Denis V. Chachkov,
  • Oleg V. Mikhailov

DOI
https://doi.org/10.3390/ijms222112067
Journal volume & issue
Vol. 22, no. 21
p. 12067

Abstract

Read online

Quantum-chemical calculation of most important parameters of molecular and electronic structures of octa-carbon C8 having cubic form (bond lengths, bond and torsion angles) using CCSD(T)/QZVP and DFT B3PW91/QZVP methods, has been carried out. NBO analysis data and HOMO/LUMO images for this compound are presented, too. Good agreement was found between the structural data obtained using the above two quantum-chemical methods and, also, with corresponding experimental data. Also, the standard thermodynamic parameters of formation of cubic C8 considered here, and namely standard enthalpy ΔfH0(298K), entropy Sf0(298K) and Gibbs’ energy ΔfG0(298K) of formation for this compound were calculated. By using this data, a theoretically possible variant of the synthesis of this compound by dehydrogenation of cubane C8H8 is considered, and the thermodynamic characteristics of each of the four stages of this process have been calculated. It is noted that each of the four stages of this process is characterized by a very high (about 500 kJ/mol) enthalpy of activation, as a result of that, for their realization within a sufficiently short time, the use of appropriate catalysts is necessary.

Keywords