Active Zone Scaffold Protein Ratios Tune Functional Diversity across Brain Synapses
Andreas Fulterer,
Till F.M. Andlauer,
Anatoli Ender,
Marta Maglione,
Katherine Eyring,
Jennifer Woitkuhn,
Martin Lehmann,
Tanja Matkovic-Rachid,
Joerg R.P. Geiger,
Alexander M. Walter,
Katherine I. Nagel,
Stephan J. Sigrist
Affiliations
Andreas Fulterer
Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
Till F.M. Andlauer
Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
Anatoli Ender
German Center for Neurodegenerative Disorders, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
Marta Maglione
Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
Katherine Eyring
Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
Jennifer Woitkuhn
Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
Martin Lehmann
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
Tanja Matkovic-Rachid
Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
Joerg R.P. Geiger
NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany; Institut für Neurophysiologie, Charité Universitätsmedizin, 10117 Berlin, Germany
Alexander M. Walter
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
Katherine I. Nagel
Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA; Corresponding author
Stephan J. Sigrist
Institute for Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany; Corresponding author
Summary: High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and “nanoscopic molecular fingerprints” might identify synapses with specific temporal features. : Fulterer et al. demonstrates that the scaffold proteins Bruchpilot and Syd-1 cluster (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from voltage-gated Ca2+ channels in the Drosophila olfactory system. These scaffold/release factor “modules” varied significantly between different synapse types, thereby tuning release features toward depression or facilitation. Keywords: neurotransmitter release, positional priming, munc13, Bruchpilot, Syd-1, synapse diversity, olfactory system, Drosophila, nanoscopy, synapse physiology, active zone