Applied Sciences (Aug 2019)
Ion Channel Properties of a Cation Channelrhodopsin, <i>Gt</i>_CCR4
Abstract
We previously reported a cation channelrhodopsin, Gt_CCR4, which is one of the 44 types of microbial rhodopsins from a cryptophyte flagellate, Guillardia theta. Due to the modest homology of amino acid sequences with a chlorophyte channelrhodopsin such as Cr_ChR2 from Chlamydomonas reinhardtii, it has been proposed that a family of cryptophyte channelrhodopsin, including Gt_CCR4, has a distinct molecular mechanism for channel gating and ion permeation. In this study, we compared the photocurrent properties, cation selectivity and kinetics between well-known Cr_ChR2 and Gt_CCR4 by a conventional path clamp method. Large and stable light-induced cation conduction by Gt_CCR4 at the maximum absorbing wavelength (530 nm) was observed with only small inactivation (15%), whereas the photocurrent of Cr_ChR2 exhibited significant inactivation (50%) and desensitization. The light sensitivity of Gt_CCR4 was higher (EC50 = 0.13 mW/mm2) than that of Cr_ChR2 (EC50 = 0.80 mW/mm2) while the channel open life time (photocycle speed) was in the same range as that of Cr_ChR2 (25~30 ms for Gt_CCR4 and 10~15 ms for Cr_ChR2). This observation implies that Gt_CCR4 enables optical neuronal spiking with weak light in high temporal resolution when applied in neuroscience. Furthermore, we demonstrated high Na+ selectivity of Gt_CCR4 in which the selectivity ratio for Na+ was 37-fold larger than that for Cr_ChR2, which primarily conducts H+. On the other hand, Gt_CCR4 conducted almost no H+ and no Ca2+ under physiological conditions. These results suggest that ion selectivity in Gt_CCR4 is distinct from that in Cr_ChR2. In addition, a unique red-absorbing and stable intermediate in the photocycle was observed, indicating a photochromic property of Gt_CCR4.
Keywords