Microbiology Spectrum (Oct 2023)

The efficacy of prevention for colon cancer based on the microbiota therapy and the antitumor mechanisms with intervention of dietary Lactobacillus

  • Fuqiang Xu,
  • Qiaoqiao Li,
  • Shuyang Wang,
  • Miaoyin Dong,
  • Guoqing Xiao,
  • Jin Bai,
  • Junkai Wang,
  • Xisi Sun

DOI
https://doi.org/10.1128/spectrum.00189-23
Journal volume & issue
Vol. 11, no. 5

Abstract

Read online

ABSTRACT Gut microbiota and their secreted metabolites have an influence on the initiation and progression of colon cancer. Probiotics are extensively perceived as a potential microbiota-modulation strategy to promote the health of the host, while the effectiveness of preventing colon cancer based on microbiota therapy has not been confirmed, and antitumor mechanisms influenced by microbiota and their metabolites with the intervention of probiotics remain to be further investigated. In vitro, Lactobacillus (JY300-8 and JMR-01) significantly inhibited the proliferation of CT26, HT29, and HCT116 cells. Moreover, we studied the prevention and therapy efficiency of Lactobacillus and its underlying antitumor mechanism through the alteration of gut microbiota and their metabolites regulated by Lactobacillus in colon cancer models in mice. We demonstrated that the pre-administration of Lactobacillus (JY300-8 and JMR-01) for 20 days before establishing tumor models resulted in an 86.21% reduction in tumor formation rate compared to tumor control group. Subsequently, continuous oral administration of living Lactobacillus significantly suppresses tumor growth, and tumor volumes decrease by 65.2%. Microbiome and metabolome analyses reveal that Lactobacillus suppresses colonic tumorigenesis and progression through the modulation of gut microbiota homeostasis and metabolites, including the down-regulation of secondary bile acids, sphingosine 1-phosphate (S1P), and pyrimidine metabolism, as well as the production of anticarcinogenic compounds in tumor-bearing mice. Additionally, metabolome analyses of Lactobacillus (JY300-8 and JMR-01) indicate that living Lactobacillus could reduce the relative abundance of alanine and L-serine to suppress tumor progression by regulating the tumor microenvironment, including down-regulation of pyrimidine metabolism and S1P signaling in cancer. These findings provide a potential prevention strategy and therapeutic target for colon cancer through the intervention of dietary Lactobacillus. IMPORTANCE The modulation of gut microbiota and metabolites has a significant influence on the progression of colon cancer. Our research indicated that the intervention of probiotics is a potentially feasible strategy for preventing colon cancer. We have also revealed the underlying antitumor mechanism through the alteration of gut microbiota and their metabolites, which could lead to broader biomedical impacts on the prevention and therapy of colon cancer with microbiota-based therapy regulated by probiotics.

Keywords