New Cryogels Based on Poly(vinyl alcohol) and a Copolymacrolactone System: I-Synthesis and Characterization
Bianca-Elena-Beatrice Crețu,
Loredana Elena Nita,
Alexandru-Mihail Șerban,
Alina Gabriela Rusu,
Florica Doroftei,
Aurica P. Chiriac
Affiliations
Bianca-Elena-Beatrice Crețu
Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
Loredana Elena Nita
Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
Alexandru-Mihail Șerban
Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
Alina Gabriela Rusu
Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
Florica Doroftei
Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
Aurica P. Chiriac
Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
Physical cryogels were obtained using the successive freeze–thaw technique of poly(vinyl alcohol) (PVA)/poly(ethylene brassylate-co-squaric acid) (PEBSA) solutions. The cryogel systems were prepared by using two different molecular weights of PVA and PEBSA with three different ratios between the ethylene brassylate (EB) and squaric acid (SA) comonomers. The presence of interactions, the thermal properties and the morphology were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), thermogravimetry (TGA and DTG) and scanning electron microscopy (SEM), respectively. The influence of the composition on the degree of swelling in a physiological environment was demonstrated. The study highlighted improvements in terms of new network flexibility due to the intermolecular chains interactions brought by the introduction of PEBSA in the cryogel structure. We also concluded that the presence of PEBSA in the PVA/PEBSA cryogel network improved the loading capacity of the new system with specific hydrophobic agents, for example essential oils, which (due to their antimicrobial character) can lead to the use of new systems obtained for various applications.