Journal of Mathematics (Jan 2024)

Computing Some Topological Indices of Two Kinds of Dendrimer Graphs Gn and Hn

  • Hojat Kaviani,
  • Lotfallah Pourfaraj

DOI
https://doi.org/10.1155/jom/3841877
Journal volume & issue
Vol. 2024

Abstract

Read online

Dendrimer molecules are macromolecules which have many applications in nanosciences, drug delivery, biology, and different areas of sciences. Topological indices of chemical graph theory are numerical descriptor of a molecular structure. The dendrimer graph Gn is obtained by attaching the new paths P9, joined each pendant vertex of Gn−1 to central vertex of P9. Also, the dendrimer graph Hn is obtained by attaching the new paths P15, joined each pendant vertex of Hn−1 to central vertex of P15. In this paper, we study topological indices of dendrimer graphs Gn and Hn. Also, we obtain the Szeged index, Wiener index, Steiner k–Wiener index, Schultz index, Gutman index, Padmakar–Ivan index, first Zagreb index, and second Zagreb index of dendrimer graphs Gn and Hn.