Shiyou shiyan dizhi (Jul 2023)

Characteristics of NE strike-slip fault system in the eastern section of Bachu-Maigaiti area, Tarim Basin and its oil-gas geological significance

  • Zhongpei ZHANG,
  • Qinqi XU,
  • Shilin LIU,
  • Yushuang ZHOU,
  • Huabiao QIU,
  • Hongmei LU,
  • Hanzhou WANG,
  • Yukai QI

DOI
https://doi.org/10.11781/sysydz202304761
Journal volume & issue
Vol. 45, no. 4
pp. 761 – 769

Abstract

Read online

Many Ordovician reservoirs discovered in the eastern section of Bachu-Maigaiti area ("Bamai area" for short) in the Tarim Basin are closely related to multi-stage active faults, making it the key to find oil and gas reservoirs in this area by identifying the source faults that cut through Cambrian gypsum-salt layers. Combined with the analysis of fault structure based on a large number of new seismic data and previous studies, the fault system in the eastern section of the Bamai area, especially the distribution and activity characteristics of strike slip faults are reunderstood. The results show that along with the migration and evolution of palaeo-uplift and the activities of large thrust fault zones in Bamai area, a series of high-angle and small-distance NE strike-slip faults that play a role of deformation and regulation are also developed, which together constitute the deformation tectonic system in the area. Two types of strike slip faults are developed in this area. One is superimposed and developed simultaneously or later with the NE and nearly EW Cambrian post-salt decollement zone of bruchfalten, with its strike consistent with that of the thrust fault belt, which is mainly distributed in the boundary and interior of the Hetian paleo-uplift. The other is developed in the compression-shortening zone confined by the large thrust fault belt, intersected with the nearly EW thrust fault belt at a large angle, and mainly distributed in the Hetian palaeo-uplift and Bachu faulted uplift. The former mainly formed in the late Hercynian period with weak local activities in the late Himalayan period, and the latter mainly formed in the late Himalayan period. The strike-slip faults superimposed with the Ordovician carbonate rocks that has experienced karst transformation in the middle and late Caledonian and early Hercynian are more conducive to the formation of effective fracture-karst vug reservoirs. They connect the upper and lower strata of the gypsum-salt layers, and their active period is consistent with the main hydrocarbon generation period of the deep subsalt source rocks, which is more conducive to transporting hydrocarbon source upward to the Ordovician system for accumulation. The large-scale reservoir located above the source and connected with two types of high-angle strike-slip faults is the favorable exploration direction of Ordovician.

Keywords