Scientific Reports (Jan 2022)
Investigating the impact of emotion on temporal orientation in a deep multitask setting
Abstract
Abstract Temporal orientation is an important aspect of human cognition which shows how an individual emphasizes past, present, and future. Theoretical research in psychology shows that one’s emotional state can influence his/her temporal orientation. We hypothesize that measuring human temporal orientation can benefit from concurrent learning of emotion. To test this hypothesis, we propose a deep learning-based multi-task framework where we concurrently learn a unified model for temporal orientation (our primary task) and emotion analysis (secondary task) using tweets. Our multi-task framework takes users’ tweets as input and produces three temporal orientation labels (past, present or future) and four emotion labels (joy, sadness, anger, or fear) with intensity values as outputs. The classified tweets are then grouped for each user to obtain the user-level temporal orientation and emotion. Finally, we investigate the associations between the users’ temporal orientation and their emotional state. Our analysis reveals that joy and anger are correlated to future orientation while sadness and fear are correlated to the past orientation.