PLoS ONE (Jan 2022)

Conversion of mammalian cell culture media waste to microbial fermentation feed efficiently supports production of recombinant protein by Escherichia coli.

  • Ciara D Lynch,
  • David J O'Connell

DOI
https://doi.org/10.1371/journal.pone.0266921
Journal volume & issue
Vol. 17, no. 5
p. e0266921

Abstract

Read online

Deriving new value from waste streams through secondary processes is a central aim of the circular bioeconomy. In this study we investigate whether chemically defined spent media (CDSM) waste from cell culture bioprocess can be recycled and used as a feed in secondary microbial fermentation to produce new recombinant protein products. Our results show that CDSM supplemented with 2% glycerol supported a specific growth rate of E. coli cultures equivalent to that achieved using a nutritionally rich microbiological media (LB). The titre of recombinant protein produced following induction in a 4-hour expression screen was approximately equivalent in the CDSM fed cultures to that of baseline, and this was maintained in a 16-hr preparative fermentation. To understand the protein production achieved in CDSM fed culture we performed a quantitative analysis of proteome changes in the E. coli using mass spectrometry. This analysis revealed significant upregulation of protein synthesis machinery enzymes and significant downregulation of carbohydrate metabolism enzymes. We conclude that spent cell culture media, which represents 100s of millions of litres of waste generated by the bioprocessing industry annually, may be valorized as a feed resource for the production of recombinant proteins in secondary microbial fermentations. Data is available via ProteomeXchange with identifier PXD026884.