Atmospheric Chemistry and Physics (Sep 2021)
Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements
- H. Guo,
- C. M. Flynn,
- M. J. Prather,
- S. A. Strode,
- S. D. Steenrod,
- L. Emmons,
- F. Lacey,
- F. Lacey,
- J.-F. Lamarque,
- A. M. Fiore,
- G. Correa,
- L. T. Murray,
- G. M. Wolfe,
- G. M. Wolfe,
- J. M. St. Clair,
- J. M. St. Clair,
- M. Kim,
- J. Crounse,
- G. Diskin,
- J. DiGangi,
- B. C. Daube,
- B. C. Daube,
- R. Commane,
- R. Commane,
- K. McKain,
- K. McKain,
- J. Peischl,
- J. Peischl,
- T. B. Ryerson,
- T. B. Ryerson,
- C. Thompson,
- T. F. Hanisco,
- D. Blake,
- N. J. Blake,
- E. C. Apel,
- R. S. Hornbrook,
- J. W. Elkins,
- E. J. Hintsa,
- E. J. Hintsa,
- F. L. Moore,
- F. L. Moore,
- S. Wofsy
Affiliations
- H. Guo
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
- C. M. Flynn
- Department of Meteorology, Stockholm University, Stockholm 106 91, Sweden
- M. J. Prather
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
- S. A. Strode
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- S. D. Steenrod
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- L. Emmons
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- F. Lacey
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- F. Lacey
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
- J.-F. Lamarque
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- A. M. Fiore
- Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
- G. Correa
- Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
- L. T. Murray
- Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14611, USA
- G. M. Wolfe
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- G. M. Wolfe
- Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD 21228, USA
- J. M. St. Clair
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- J. M. St. Clair
- Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD 21228, USA
- M. Kim
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- J. Crounse
- Atmospheric Composition, NASA Langley Research Center, Hampton, VA 23666, USA
- G. Diskin
- Atmospheric Composition, NASA Langley Research Center, Hampton, VA 23666, USA
- J. DiGangi
- Atmospheric Composition, NASA Langley Research Center, Hampton, VA 23666, USA
- B. C. Daube
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- B. C. Daube
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- R. Commane
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- R. Commane
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- K. McKain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
- K. McKain
- Global Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USA
- J. Peischl
- Global Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USA
- J. Peischl
- Chemical Sciences Division, National Oceanic and Atmospheric Administration Earth System Research Laboratory, Boulder, CO 80305, USA
- T. B. Ryerson
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
- T. B. Ryerson
- Chemical Sciences Division, National Oceanic and Atmospheric Administration Earth System Research Laboratory, Boulder, CO 80305, USA
- C. Thompson
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
- T. F. Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- D. Blake
- Department of Chemistry, University of California, Irvine, CA 92697, USA
- N. J. Blake
- Department of Chemistry, University of California, Irvine, CA 92697, USA
- E. C. Apel
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- R. S. Hornbrook
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301, USA
- J. W. Elkins
- Global Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USA
- E. J. Hintsa
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
- E. J. Hintsa
- Global Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USA
- F. L. Moore
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
- F. L. Moore
- Global Monitoring Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USA
- S. Wofsy
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- DOI
- https://doi.org/10.5194/acp-21-13729-2021
- Journal volume & issue
-
Vol. 21
pp. 13729 – 13746
Abstract
The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze a data set of 10 s (2 km) merged and gap-filled observations of the key reactive species driving the chemical budgets of O3 and CH4 (O3, CH4, CO, H2O, HCHO, H2O2, CH3OOH, C2H6, higher alkanes, alkenes, aromatics, NOx, HNO3, HNO4, peroxyacetyl nitrate, other organic nitrates), consisting of 146 494 distinct air parcels from ATom deployments 1 through 4. Six models calculated the O3 and CH4 photochemical tendencies from this modeling data stream for ATom 1. We find that 80 %–90 % of the total reactivity lies in the top 50 % of the parcels and 25 %–35 % in the top 10 %, supporting previous model-only studies that tropospheric chemistry is driven by a fraction of all the air. In other words, accurate simulation of the least reactive 50 % of the troposphere is unimportant for global budgets. Surprisingly, the probability densities of species and reactivities averaged on a model scale (100 km) differ only slightly from the 2 km ATom data, indicating that much of the heterogeneity in tropospheric chemistry can be captured with current global chemistry models. Comparing the ATom reactivities over the tropical oceans with climatological statistics from six global chemistry models, we find excellent agreement with the loss of O3 and CH4 but sharp disagreement with production of O3. The models sharply underestimate O3 production below 4 km in both Pacific and Atlantic basins, and this can be traced to lower NOx levels than observed. Attaching photochemical reactivities to measurements of chemical species allows for a richer, yet more constrained-to-what-matters, set of metrics for model evaluation.