Membranes (Jun 2023)

Effective Removal of Acetaldehyde Using Piperazine/Nitric Acid Co-Impregnated Bead-Type Activated Carbon

  • Yu-Jin Kang,
  • Yu-Jin Kim,
  • Seong-Jin Yoon,
  • Dong-Jin Seo,
  • Hye-Ryeong Cho,
  • Kyeongseok Oh,
  • Seong-Ho Yoon,
  • Joo-Il Park

DOI
https://doi.org/10.3390/membranes13060595
Journal volume & issue
Vol. 13, no. 6
p. 595

Abstract

Read online

Acetaldehyde (CH3CHO) in the atmosphere is associated with adverse health effects. Among the various options for use in removing CH3CHO, adsorption is often employed because of its convenient application and economical processes, particularly when using activated carbon. In previous studies, the surface of activated carbon has been modified with amines to remove CH3CHO from the atmosphere via adsorption. However, these materials are toxic and can have harmful effects on humans when the modified activated carbon is used in air-purifier filters. Therefore, in this study, a customized bead-type activated carbon (BAC) with surface modification options via amination was evaluated for removing CH3CHO. Various amounts of non-toxic piperazine or piperazine/nitric acid were used in amination. Chemical and physical analyses of the surface-modified BAC samples were performed using Brunauer–Emmett–Teller measurements, elemental analyses, and Fourier transform infrared and X-ray photoelectron spectroscopy. The chemical structures on the surfaces of the modified BACs were analyzed in detail using X-ray absorption spectroscopy. The amine and carboxylic acid groups on the surfaces of the modified BACs are critical in CH3CHO adsorption. Notably, piperazine amination decreased the pore size and volume of the modified BAC, but piperazine/nitric acid impregnation maintained the pore size and volume of the modified BAC. In terms of CH3CHO adsorption, piperazine/nitric acid impregnation resulted in a superior performance, with greater chemical adsorption. The linkages between the amine and carboxylic acid groups may function differently in piperazine amination and piperazine/nitric acid treatment.

Keywords