A Comparison of Production Methods of High-Purity Perrhenic Acid from Secondary Resources
Dorota Kopyto,
Mateusz Ciszewski,
Szymon Orda,
Katarzyna Leszczyńska-Sejda,
Joanna Malarz,
Patrycja Kowalik,
Karolina Pianowska,
Karolina Goc,
Grzegorz Benke,
Alicja Grzybek,
Dorota Babilas,
Piotr Dydo
Affiliations
Dorota Kopyto
Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Mateusz Ciszewski
Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Szymon Orda
Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Katarzyna Leszczyńska-Sejda
Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Joanna Malarz
Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Patrycja Kowalik
Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Karolina Pianowska
Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Karolina Goc
Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Grzegorz Benke
Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Alicja Grzybek
Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Centre of Hydroelectrometallurgy, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Dorota Babilas
Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, ul. B. Krzywoustego 6, 44-100 Gliwice, Poland
Piotr Dydo
Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, ul. B. Krzywoustego 6, 44-100 Gliwice, Poland
Methods for obtaining high-purity perrhenic acid (with metallic impurities content below 100 ppm) of a high concentration > 200 g/dm3 and entirely from secondary raw materials were compared. Comparative analyses of three methods were performed: electrodialysis, solvent extraction (research carried out directly as part of the Small Grant project acronym RenMet), and ion-exchange (developed as part of previous projects implemented by Łukasiewicz-IMN). The basic process parameters were selected as comparative indicators: efficiency and selectivity of the process, purity of the obtained product, availability and consumption of raw materials and reagents, equipment necessary to carry out the process, the profitability of the technology, and the ecological aspects, i.e., the possibility of managing the generated solid waste and post-production solutions. Analysis of the verified indicators allowed us to select the most economically and ecologically advantageous method of obtaining high-purity perrhenic acid from secondary raw materials. Its preparation using the ion-exchange method emphasizes the product’s purity and the process’s simplicity, using readily available waste materials and renewable ion-exchange resin, and is based on a sustainable circular economy.