Pathogens (Nov 2020)
The Surface Protein Fructose-1, 6 Bisphosphate Aldolase of <i>Klebsiella pneumoniae</i> Serotype K1: Role of Interaction with Neutrophils
Abstract
Hypermucoviscosity phenotypic Klebsiella pneumoniae (HV-Kp) serotype K1 is the predominant pathogen of a pyogenic liver abscess, an emerging infectious disease that often complicates septic metastatic syndrome in diabetic patients with poor sugar control. HV-Kpisolates were more resistant to neutrophil phagocytosis than non-HV-Kpisolates because of different pathogen-associated molecular patterns. The protein expression of HV-Kp after interaction with neutrophils is unclear. We studied KP-M1 (HV phenotype; serotype K1), DT-X (an acapsularmutant strain of KP-M1), and E. coli (ATCC 25922) with the model of Kp-infected neutrophils, using a comparative proteomic approach. One the identified protein, namely fructose-1, 6-bisphosphate aldolase (FBA), was found to be distributed in the KP-M1 after infecting neutrophils. Cell fractionation experiments showed that FBA is localized both to the cytoplasm and the outer membrane. Flow cytometry demonstrated that outer membrane-localized FBA was surface-accessible to FBA-specific antibody. The fba gene expression was enhanced in high glucose concentrations, which leads to increasing bacterial resistance to neutrophils phagocytosis and killing. The KP-M1 after FBA inhibitors and FBA-specific antibody treatment showed a significant reduction in bacterial resistance to neutrophils phagocytosis and killing, respectively, compared to KP-M1 without treatment. FBA is a highly conserved surface-exposed protein that is required for optimal interaction of HV-Kp to neutrophils.
Keywords