Effects of Serine or Threonine in the Active Site of Typical 2-Cys Prx on Hyperoxidation Susceptibility and on Chaperone Activity
Carlos A. Tairum,
Melina Cardoso Santos,
Carlos Alexandre Breyer,
Ana Laura Pires de Oliveira,
Vitoria Isabela Montanhero Cabrera,
Guilherme Toledo-Silva,
Gustavo Maruyama Mori,
Marcos Hikari Toyama,
Luis Eduardo Soares Netto,
Marcos Antonio de Oliveira
Affiliations
Carlos A. Tairum
Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil
Melina Cardoso Santos
Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil
Carlos Alexandre Breyer
Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil
Ana Laura Pires de Oliveira
Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil
Vitoria Isabela Montanhero Cabrera
Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil
Guilherme Toledo-Silva
Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
Gustavo Maruyama Mori
Laboratório de Ecologia Molecular, Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil
Marcos Hikari Toyama
Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil
Luis Eduardo Soares Netto
Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 01049-010, Brazil
Marcos Antonio de Oliveira
Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente 01049-010, Brazil
Typical 2-Cys peroxiredoxins (2-Cys Prx) are ubiquitous Cys-based peroxidases, which are stable as decamers in the reduced state, and may dissociate into dimers upon disulfide bond formation. A peroxidatic Cys (CP) takes part of a catalytic triad, together with a Thr/Ser and an Arg. Previously, we described that the presence of Ser (instead of Thr) in the active site stabilizes yeast 2-Cys Prx as decamers. Here, we compared the hyperoxidation susceptibilities of yeast 2-Cys Prx. Notably, 2-Cys Prx containing Ser (named here Ser-Prx) were more resistant to hyperoxidation than enzymes containing Thr (Thr-Prx). In silico analysis revealed that Thr-Prx are more frequent in all domains of life, while Ser-Prx are more abundant in bacteria. As yeast 2-Cys Prx, bacterial Ser-Prx are more stable as decamers than Thr-Prx. However, bacterial Ser-Prx were only slightly more resistant to hyperoxidation than Thr-Prx. Furthermore, in all cases, organic hydroperoxide inhibited more the peroxidase activities of 2-Cys Prx than hydrogen peroxide. Moreover, bacterial Ser-Prx displayed increased thermal resistance and chaperone activity, which may be related with its enhanced stability as decamers compared to Thr-Prx. Therefore, the single substitution of Thr by Ser in the catalytic triad results in profound biochemical and structural differences in 2-Cys Prx.