Progress in Earth and Planetary Science (Sep 2020)

A new insight into isotopic fractionation associated with decarboxylation in organisms: implications for amino acid isotope approaches in biogeoscience

  • Yuko Takizawa,
  • Yoshinori Takano,
  • Bohyung Choi,
  • Prarthana S. Dharampal,
  • Shawn A. Steffan,
  • Nanako O. Ogawa,
  • Naohiko Ohkouchi,
  • Yoshito Chikaraishi

DOI
https://doi.org/10.1186/s40645-020-00364-w
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Stable nitrogen (15N/14N) and carbon (13C/12C) isotopic compositions of amino acids in organisms have widely been employed as a powerful tool to evaluate resource utilization and trophic connection among organisms in diverse ecosystems. However, little is known about the physiological factors or mechanisms responsible for determining the isotopic discrimination (particularly for carbon) within amino acids of organisms. In the present study, we investigated the inter-trophic discrimination of nitrogen and carbon isotopes within amino acids (Δδ 15NAA and Δδ 13CAA, respectively) using four consumer–diet pairs. Each pairing illustrates a metabolic perspective of isotopic fractionation of amino acids. The Δδ 15NAA values in these combinations reveal a trend consistent with those observed in many other combinations in previous studies. This further validates a standard scenario: the deamination preferentially removes 14N amino group from diet-derived amino acids, leaving behind the 15N-enriched amino acids in consumer biomass. The Δδ 15NAA values thus mirror the activity of amino acid deamination in consumers. In contrast, the trends in the Δδ 13CAA value suggest a different metabolic fate for the amino acid carbon isotope. Based on our results, we predict the following scenario: decarboxylation preferentially removes 12C α-carbon (i.e., carbonyl-carbon) from pyruvic acid in glycolysis, and from α-ketoglutaric acid in the tricarboxylic acid cycle, leaving behind the 13C-enriched both pyruvic and α-ketoglutaric acids. The 13C is then transferred to amino acids that are synthesized from the 13C-enriched precursor molecules within consumers. The Δδ 13CAA values therefore mirror the pathways of de novo amino acid synthesis in consumers. The proposed link between nitrogen and carbon isotopes can refine our knowledge of the potential processes affecting the isotopic fractionation within diet and consumer compartments, as well as environmental samples. Graphical abstract

Keywords