A chromosome-level genome of the human blood fluke Schistosoma japonicum identifies the genomic basis of host-switching
Fang Luo,
Wenbin Yang,
Mingbo Yin,
Xiaojin Mo,
Yuhong Pang,
Chengsong Sun,
Bingkuan Zhu,
Wei Zhang,
Cun Yi,
Zhidan Li,
Jipeng Wang,
Bin Xu,
Zheng Feng,
Yangyi Huang,
Yan Lu,
Wei Hu
Affiliations
Fang Luo
Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
Wenbin Yang
Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
Mingbo Yin
Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
Xiaojin Mo
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention and Fudan University, Shanghai, China
Yuhong Pang
Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
Chengsong Sun
Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
Bingkuan Zhu
Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
Wei Zhang
Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
Cun Yi
Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
Zhidan Li
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention and Fudan University, Shanghai, China
Jipeng Wang
Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
Bin Xu
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention and Fudan University, Shanghai, China
Zheng Feng
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention and Fudan University, Shanghai, China
Yangyi Huang
Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China; College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
Yan Lu
Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China; Corresponding author
Wei Hu
Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention and Fudan University, Shanghai, China; College of Life Sciences, Inner Mongolia University, Hohhot, China; Corresponding author
Summary: The evolution and adaptation of S. japonicum, a zoonotic parasite that causes human schistosomiasis, remain unclear because of the lack of whole-genome data. We construct a chromosome-level S. japonicum genome and analyze it together with 72 samples representing six populations of the entire endemic region. We observe a Taiwan zoophilic lineage splitting from zoonotic populations ∼45,000 years ago, consistent with the divergent history of their intermediate hosts. Interestingly, we detect a severe population bottleneck in S. japonicum, largely coinciding with human history in Asia during the last glacial maximum. We identify several genomic regions underlying natural selection, including GATAD2A and Lmln, both showing remarkable differentiation among different areas. RNAi knockdown suggests association of GATAD2A with parasite development and infection in definitive hosts, while Lmln relates to the specificity of the intermediate hosts. Our study provides insights into the evolution of S. japonicum and serves as a resource for further studies.