Red blood cell trapping using single-beam acoustic tweezers in the Rayleigh regime
Jinhee Yoo,
Jinhyuk Kim,
Jungwoo Lee,
Hyung Ham Kim
Affiliations
Jinhee Yoo
School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongbuk 37673, Republic of Korea
Jinhyuk Kim
Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
Jungwoo Lee
Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea; Corresponding author
Hyung Ham Kim
School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongbuk 37673, Republic of Korea; Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongbuk 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongbuk 37673, Republic of Korea; Corresponding author
Summary: Acoustic tweezers (ATs) are a promising technology that can trap and manipulate microparticles or cells with the focused ultrasound beam without physical contact. Unlike optical tweezers, ATs may be used for in vivo studies because they can manipulate cells through tissues. However, in previous non-invasive microparticle trapping studies, ATs could only trap spherical particles, such as beads. Here, we present a theoretical analysis of how the acoustic beam traps red blood cells (RBCs) with experimental demonstration. The proposed modeling shows that the trapping of a non-spherical, biconcave-shaped RBC could be successfully done by single-beam acoustic tweezers (SBATs). We demonstrate this by trapping RBCs using SBATs in the Rayleigh regime, where the cell size is smaller than the wavelength of the beam. Suggested SBAT is a promising tool for cell transportation and sorting.