ASIC3 Mediates Itch Sensation in Response to Coincident Stimulation by Acid and Nonproton Ligand
Zhong Peng,
Wei-Guang Li,
Chen Huang,
Yi-Ming Jiang,
Xiang Wang,
Michael Xi Zhu,
Xiaoyang Cheng,
Tian-Le Xu
Affiliations
Zhong Peng
Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Wei-Guang Li
Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Chen Huang
Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Yi-Ming Jiang
Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Xiang Wang
Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Michael Xi Zhu
Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
Xiaoyang Cheng
Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Tian-Le Xu
Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
The regulation and mechanisms underlying itch sensation are complex. Here, we report a role for acid-sensing ion channel 3 (ASIC3) in mediating itch evoked by certain pruritogens during tissue acidosis. Co-administration of acid with Ser-Leu-Ile-Gly-Arg-Leu-NH2 (SL-NH2) increased scratching behavior in wild-type, but not ASIC3-null, mice, implicating the channel in coincident detection of acidosis and pruritogens. Mechanistically, SL-NH2 slowed desensitization of proton-evoked currents by targeting the previously identified nonproton ligand-sensing domain located in the extracellular region of ASIC3 channels in primary sensory neurons. Ablation of the ASIC3 gene reduced dry-skin-induced scratching behavior and pathological changes under conditions with concomitant inflammation. Taken together, our data suggest that ASIC3 mediates itch sensation via coincident detection of acidosis and nonproton ligands that act at the nonproton ligand-sensing domain of the channel.