Bioresources and Bioprocessing (Dec 2019)

The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture

  • Pawarisa Luangthongkam,
  • Peter James Strong,
  • Syarifah Nuraqmar Syed Mahamud,
  • Paul Evans,
  • Paul Jensen,
  • Gene Tyson,
  • Bronwyn Laycock,
  • Paul Andrew Lant,
  • Steven Pratt

DOI
https://doi.org/10.1186/s40643-019-0285-1
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 10

Abstract

Read online

Abstract A methanotrophic community was enriched in a semi-continuous reactor under non-aseptic conditions with methane and ammonia as carbon and nitrogen source. After a year of operation, Methylosinus sp., accounted for 80% relative abundance of the total sequences identified from potential polyhydroxyalkanoates (PHAs) producers, dominated the methane-fed enrichment. Prior to induction of PHA accumulation, cells harvested from the parent reactor contained low level of PHA at 4.0 ± 0.3 wt%. The cells were later incubated in the absence of ammonia with various combinations of methane, propionic acid, and valeric acid to induce biosynthesis of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Previous studies reported that methanotrophic utilization of odd-chain fatty acids for the production of PHAs requires reducing power from methane oxidation. However, our findings demonstrated that the PHB-containing methanotrophic enrichment does not require methane availability to generate 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV)—when odd-chain fatty acids are presented. The enrichment yielded up to 14 wt% PHA with various mole fractions of 3HV monomer depending on the availability of methane and odd-fatty acids. Overall, the addition of valeric acid resulted in a higher PHA content and a higher 3HV fraction. The highest 3HV fraction (up to 65 mol%) was obtained from the methane–valeric acid experiment, which is higher than those previously reported for PHA-producing methanotrophic mixed microbial cultures.

Keywords