Лесной журнал (Apr 2025)
Применение алгоритма Random Forest для анализа динамики таежно-тундровых лесных экосистем
Abstract
Приведены результаты изучения динамики таежно-тундровых лесных экосистем Архангельской области на основе материалов дистанционного зондирования Земли и применения классификации изображений с использованием алгоритма случайного леса (Random Forest). Изменение доли лесных, нелесных и не покрытых лесом площадей в районе исследования отмечено в лесном реестре. По итогам работы показано значительное увеличение территории лесов с 2016 по 2023 гг. – на 10,28 % за счет сокращения не покрытых лесом площадей и нелесных земель. Эта динамика обусловлена процессами успешного естественного восстановления лесов, а также их продвижением на север с захватом площадей в связи с изменением климата. Оценка точности автоматизированной классификации спутниковых изображений с использованием алгоритма случайного леса путем сравнения с эталонными данными с применением таких критериев, как общая точность и коэффициент Каппа (степень соответствия оценок модели фактическим данным), подтвердила надежность полученных результатов. В качестве эталонных показателей брали материалы таксационных повыдельных баз данных, данных пробных площадей – стационарных и государственной инвентаризации лесов. Перед началом полевых работ были изучены картографические базы данных и подобраны пробные площади. С опорой на экспериментальные данные по исследуемому району создано большое количество полигонов, отражающих разнообразие лесных насаждений и нелесных территорий, для обучения алгоритма классификации спутниковых изображений. Обработка снимков, включая поправки, мозаику, геопроекцию и возврат, выполнялась с использованием SNAP (Sentinel Application Platform) – программы с открытым исходным кодом. Проанализированы 100 точек в различных лесорастительных условиях в районе исследования. Изучение динамики лесных экосистем на основе материалов дистанционного зондирования Земли и применение классификации изображений с использованием алгоритма случайного леса позволят повысить точность оценки ресурсного и экологического потенциалов насаждений северо-таежных и притундровых лесов Архангельской области.
Keywords