Plant Phenome Journal (Jan 2023)
Dissecting the genetic architecture of leaf morphology traits in mungbean (Vigna radiata (L.) Wizcek) using genome‐wide association study
Abstract
Abstract Mungbean (Vigna radiata (L.) Wizcek) is an important pulse crop, increasingly used as a source of protein, fiber, low fat, carbohydrates, minerals, and bioactive compounds in human diets. Mungbean is a dicot plant with trifoliate leaves. The primary component of many plant functions, including photosynthesis, light interception, and canopy structure, are leaves. The objectives were to investigate leaf morphological attributes, use image analysis to extract leaf morphological traits from photos from the Iowa Mungbean Diversity (IMD) panel, create a regression model to predict leaflet area, and undertake association mapping. We collected over 5000 leaf images of the IMD panel consisting of 484 accessions over 2 years (2020 and 2021) with two replications per experiment. Leaf traits were extracted using image analysis, analyzed, and used for association mapping. Morphological diversity included leaflet type (oval or lobed), leaflet size (small, medium, large), lobed angle (shallow, deep), and vein coloration (green, purple). A regression model was developed to predict each ovate leaflet's area (adjusted R2 = 0.97; residual standard errors of < = 1.10). The candidate genes Vradi01g07560, Vradi05g01240, Vradi02g05730, and Vradi03g00440 are associated with multiple traits (length, width, perimeter, and area) across the leaflets (left, terminal, and right). These are suitable candidate genes for further investigation in their role in leaf development, growth, and function. Future studies will be needed to correlate the observed traits discussed here with yield or important agronomic traits for use as phenotypic or genotypic markers in marker‐aided selection methods for mungbean crop improvement.