Animal Models and Experimental Medicine (Aug 2024)

Assessment of the piroxicam‐incited model of synchronized colitis in T‐cell receptor alpha chain‐deficient mice

  • Maximo E. Lange,
  • Danisa M. Bescucci,
  • Valerie F. Boras,
  • Tony Montina,
  • G. Douglas Inglis

DOI
https://doi.org/10.1002/ame2.12456
Journal volume & issue
Vol. 7, no. 4
pp. 533 – 543

Abstract

Read online

Abstract Background A multitude of mouse models are utilized to emulate and study intestinal inflammation. T‐cell receptor alpha chain (TCRα)‐deficient mice are used as a model of spontaneous colitis that has similarities with human ulcerative colitis. However, colitis is triggered late in the life of the mouse (age: 4–5 months), and inflammation does not develop at the same time in different mice. A previously conducted study reported that the administration of the drug piroxicam triggered predictable and early colitis in TCRα‐deficient mice at the age of 6–8 weeks. However, a detailed characterization of ensuing inflammation was not provided. Methods We conducted an in‐depth examination of piroxicam‐triggered colitis in TCRα‐deficient mice, with emphasis on spatial histopathologic changes and analysis of expression of inflammatory markers. Furthermore, we tested amelioration of colitis with dexamethasone. Results We confirmed that piroxicam induced a time‐prescribed colitis and did so in the proximal colon as well as the cecum of TCRα‐deficient mice. Piroxicam administration was observed to induce epithelial hyperplasia, goblet cell loss, and leukocyte infiltration with occasional ulceration. A Swiss roll technique was used to examine the colon and cecum in its entirety. Importantly, we observed that inflammation was multifocal segmental, with areas of tissue damage in between healthy tissue. In addition, we observed variability in the severity of inflammation among replicate animals and treatments, and that the administration of dexamethasone only partially ameliorated inflammation in the proximal colon. Conclusions Piroxicam consistently induced multifocal segmental colitis in the proximal colon and cecum, although the degree of inflammation was reduced in the latter. Importantly, spatial variability in inflammation in the large intestine and the inter‐replicate variation in the severity of inflammation must be taken into consideration when utilizing this murine model of synchronized colitis.

Keywords