Journal of Personalized Medicine (Oct 2020)

Evidences of CTLA-4 and PD-1 Blocking Agents-Induced Cardiotoxicity in Cellular and Preclinical Models

  • Vincenzo Quagliariello,
  • Margherita Passariello,
  • Domenica Rea,
  • Antonio Barbieri,
  • Martina Iovine,
  • Annamaria Bonelli,
  • Antonietta Caronna,
  • Gerardo Botti,
  • Claudia De Lorenzo,
  • Nicola Maurea

DOI
https://doi.org/10.3390/jpm10040179
Journal volume & issue
Vol. 10, no. 4
p. 179

Abstract

Read online

Background: Several strategies based on immune checkpoint inhibitors (ICIs) have been developed for cancer therapy, opening to advantages in cancer outcomes. However, several ICI-induced side effects have emerged in these patients, especially a rare but clinically significant cardiotoxicity with high rate of mortality. We studied the cytotoxic and pro-inflammatory properties of Ipilimumab and Nivolumab, the underlying pathways and cytokine storm involved. Methods: Co-cultures of human cardiomyocytes and lymphocytes were exposed to Ipilimumab or Nivolumab; cell viability and expression of leukotrienes, NLRP3, MyD88, and p65/NF-kB were performed. C57 mice were treated with Ipilimumab (15 mg/kg); analysis of fractional shortening, ejection fraction, radial and longitudinal strain were made before and after treatments through 2D-echocardiography. Expression of NLRP3, MyD88, p65/NF-kB, and 12 cytokines were analyzed in murine myocardium. Results: Nivolumab and Ipilimumab exert effective anticancer, but also significant cardiotoxic effects in co-cultures of lymphocytes and tumor or cardiac cells. Both ICIs increased NLRP3, MyD88, and p65/NF-kB expression compared to untreated cells, however, the most pro-inflammatory and cardiotoxic effects were seen after exposure to Ipilimumab. Mice treated with Ipilimumab showed a significant decrease in fractional shortening and radial strain with respect to untreated mice, coupled with a significant increase in myocardial expression of NLRP3, MyD88, and several interleukins. Conclusions: Nivolumab and Ipilimumab exert cytotoxic effects mediated by the NLRP3/IL-1β and MyD88 pathways, leading to pro-inflammatory cytokine storm in heart tissue.

Keywords