Journal of Dairy Science (Mar 2022)
Invited review: A comprehensive review of visible and near-infrared spectroscopy for predicting the chemical composition of cheese
Abstract
ABSTRACT: Substantial research has been carried out on rapid, nondestructive, and inexpensive techniques for predicting cheese composition using spectroscopy in the visible and near-infrared radiation range. Moreover, in recent years, new portable and handheld spectrometers have been used to predict chemical composition from spectra captured directly on the cheese surface in dairies, storage facilities, and food plants, removing the need to collect, transport, and process cheese samples. For this review, we selected 71 papers (mainly dealing with prediction of the chemical composition of cheese) and summarized their results, focusing our attention on the major sources of variation in prediction accuracy related to cheese variability, spectrometer and spectra characteristics, and chemometrics techniques. The average coefficient of determination obtained from the validation samples ranged from 86 to 90% for predicting the moisture, fat, and protein contents of cheese, but was lower for predicting NaCl content and cheese pH (79 and 56%, respectively). There was wide variability with respect to all traits in the results of the various studies (standard deviation: 9–30%). This review draws attention to the need for more robust equations for predicting cheese composition in different situations; the calibration data set should consist of representative cheese samples to avoid bias due to an overly specific field of application and ensure the results are not biased for a particular category of cheese. Different spectrometers have different accuracies, which do not seem to depend on the spectrum extension. Furthermore, specific areas of the spectrum—the visible, infrared-A, or infrared-B range—may yield similar results to broad-range spectra; this is because several signals related to cheese composition are distributed along the spectrum. Small, portable instruments have been shown to be viable alternatives to large bench-top instruments. Last, chemometrics (spectra pre-treatment and prediction models) play an important role, especially with regard to difficult-to-predict traits. A proper, fully independent, validation strategy is essential to avoid overoptimistic results.